Fluorine in Peptides: The Synthesis of α -Fluoro- β -Amino Dipeptides by Direct Deoxofluorination/Rearrangement of N-Seryl Dipeptides

by Daniel L. Smith, Alexandra M. Z. Slawin, and David O'Hagan*

EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK (phone: +441334467176; e-mail: do1@st-andrews.ac.uk)

Dedicated to Prof. Dieter Seebach on the occasion of his 75th birthday

This article describes the stereo- and regioselectivity of the deoxofluorination of *N*-terminal dipeptides bearing a serine residue to generate, after rearrangement, *a*-fluoro- β -amine-terminated dipeptides. The ratio of the rearranged α -fluorinated regioisomer is increased, relative to the non-rearranged β -fluoro isomer, with *N*-alkylated amides. Otherwise, an intramolecular H-bond between the free amine and the amide *N*H suppresses formation of the key aziridinium intermediate required for α -fluorination. *N*-Methyl and *N*-allyl amides give exclusively α -fluorination products. Subsequent deprotection of the *N*-allyl amide to give a α -fluoro- β -amino dipeptide product is demonstrated.

1. Introduction. – There has been significant interest, particularly from the Seebach laboratory [1][2], in the synthesis and incorporation of α -fluoro- β -amino acid moieties into β -peptides, to examine the influence of the C-F bond on the overall peptide conformation. a-Fluoro amides adopt a preferred conformation where the C-F bond aligns anti to the amide CO group [3][4]. This is a relatively strong effect, dictated by the stereoelectronic preference for the dipole of the amide C=O to align antiparallel to the C–F dipole. If strategically incorporated, this preference can either reinforce or disrupt the conformation of an otherwise preferred secondary structure. Indeed, Seebach and co-workers have shown that, by changing the stereogenicity of a single C-F bond in a relatively large tridecapeptide, this can either reinforce or disrupt the secondary conformation of the peptide [2a-2c]. Thus, despite fluorine having a very low steric impact on the overall structure, the stereoelectronic effect of the C-F bond can be significant. Therefore, methods for incorporating fluorine in a stereospecific manner into β -peptides are of interest. In this article, we report the synthesis of the α fluoro- β -amino moiety by direct deoxofluorination of N-seryl dipetides, rather than the more usual approach of the deoxofluorination of serine ester 1 and then hydrolysis, followed by peptide coupling (*Scheme 1*) [5]. A key aspect of these reactions is the formation of an aziridinium intermediate 2 following activation by a deoxofluorination reagent such as N,N-diethylaminosulfur trifluoride (DAST; Scheme 1) [6]. The intermediate is then attacked by F⁻ ion to generate either an α - or β -fluorinated product (Scheme 1) [2d].

Following a study focused on the preparation of selectively fluorinated compounds for G-quadruplex DNA binding [7], we began to explore direct fluorination of *N*,*N*-

© 2012 Verlag Helvetica Chimica Acta AG, Zürich

Scheme 1. Deoxofluorination of Serine Benzyl Ester for Subsequent Incorporation into Peptides [2b]. DAST = N,N-Diethylaminosulfur trifluoride (Et₂NSF₃).

Scheme 2. N-Seryl Dipeptide Motif for Direct Fluorination with DAST. R = Bn, Me, Pr.

diallylseryl amides. In this article, we report our observations on the regiochemical outcome of these DAST-mediated deoxofluorination reactions (*Scheme 2*).

2. Results. – Three *N*,*N*-diallyl-seryl dipetides $3\mathbf{a} - 3\mathbf{c}$ were explored as substrates for direct fluorination. These dipeptides were prepared by coupling carboxylic acid **6** to L-phenylalanine, L-alanine, and L-valine amino acid methyl esters using propylphosphonic anhydride ($T3P^{\circledast}$; *Scheme 3*). *N*,*N*-Diallyl carboxylic acid **6** was synthesised in four steps starting from L-serine. The three dipeptides, $7\mathbf{a} - 7\mathbf{c}$, were isolated with good diastereoselectivity, with only a very low level of epimerization at the α -C-atom (dr 95:5) [8]. The silyl ethers were removed using buffered TBAF solution, providing the free alcohols $3\mathbf{a} - 3\mathbf{c}$ in good yields (73 - 88%), and without further epimerisation (*Scheme 3*).

Interestingly, when non-buffered Bu_4NF (TBAF) was used for the silvl deprotection of **7a**, an unexpected cyclisation to the cyclic depsipeptide **8** occurred (*Scheme 3*). The structure of depsipeptide **8** was confirmed by single-crystal X-ray structure analysis (*Fig.*). The formation of the depsipeptide is clearly the consequence of a self-condensation, although the detailed sequence of events is not clear.

The fluorination of the *N*-seryl dipeptides 3a-3c was investigated with DAST in THF at 0° (*Scheme 4*), typical conditions for the deoxofluorination of hydroxy amines in other motifs [2d][9][10]. The a- and β -fluorinated product ratios were determined by ¹⁹F- and ¹H-NMR, and are compiled in *Table 1*. There is a tendency towards higher β -selectivity. By comparison, treating ester **9** under the same conditions gave a high a-selectivity (α/β 95:5) of product **10**, consistent with that expected from the literature (*Scheme 5*; *Table 1*, *Entry 4*) [2d][9][10].

The DAST reactions of **3b** and **3c**, with Me and ⁱPr groups, respectively, generated the β -products predominantly (*Table 1, Entries 2* and 3) with α/β ratios of 35:65 and

a) SOCl₂, MeOH, r.t., 24 h, 80%. *b*) Allyl bromide (2.5 equiv.), K_2CO_3 (4.0 equiv.), MeCN, 60°, 16 h; 57%. *c*) (*tert*-Butyl)(dimethyl)silyl trifluoromethanesulfonate (TBDMSOTf; 1.1 equiv.), Et₃N (5.0 equiv.), CH₂Cl₂, r.t., 16 h, 83%. *d*) *T3P*[®] (1.5 equiv.), Phe-OMe, Ala-OMe, or Val-OMe (2.0 equiv.), EtN^PP₂ (4.0 equiv.), CH₂Cl₂, 0° to r.t., 1–12 h; 79–85%. *e*) Bu₄NF (TBAF, 4.0 equiv.; 1M THF soln.), AcOH (5.0 equiv.), THF, r.t., 12–24 h; 73–88%. *f*) TBAF (4.0 equiv.; 1M THF soln.), THF, r.t., 2 h, 27%

Figure. Crystal structure of the 14-membered cyclic depsipeptide 8

25:75, respectively, and with good diastereocontrol. By contrast, the α/β fluorination ratio following treatment of **3a** with DAST resulted in a higher α -selectivity (*Table 1*,

a) DAST, THF; 0° , 1 h, 47–81% ($\alpha + \beta$ isomers).

Table 1. Fluorination and Diastereoisomeric Ratios of Products 4a-4c and 5a-5c and Ester 9

Entry	Substrate	α/β ratio of 4/5	δ of NH [ppm]	α dr 4	β dr 5
1	3a	60:40	7.75	95:5	95:5
2	3b	35:65	7.83	85:15	95:5
3	3c	25:75	7.87	92:8	95:5
4	9	95:5	N/A	N/A	N/A

a) DAST, THF; 0°, 1 h, 69%.

Entry 1). The ¹H-NMR chemical shifts of the amide H-atom in substrate peptides **3a** – **3c** are indicative of H-bonding (*Table 1*), with higher chemical shifts corresponding to a stronger H-bond and a higher β -selectivity. The potential to form an intramolecular H-bond [11] in these substrates may compete with the formation of the key aziridinium intermediate required for α -fluorination (*Scheme 6, Pathway 1*) [6]. The β -product most likely arises by direct $S_N 2$ attack of F⁻ to the DAST-activated **11a** – **11c** (*Scheme 6, Pathway 2*), a process that will be promoted if aziridinium ring formation is suppressed by H-bonding. The diastereoisomeric ratios of the α -fluorinated products **4a** – **4c** was high as determined by ¹H- and ¹⁹F-NMR (*Table 1*). Also the diastereoisomeric ratio of the β -products **5a** – **5c** was consistent with that of the dipeptide substrate, supporting a direct $S_N 2$ attack by F⁻ at the β -C-atom.

In all three α -fluorinated products, a through-space ${}^{4}J(H,F)$ coupling of *ca.* 4 Hz is observed between the α -F-atom and the amide NH H-atom. This ${}^{4}J(H,F)$ coupling has previously been reported for this motif, from the *Seebach* laboratory, in related structures [4]. Such a through-space coupling suggests a proximity in space within the

Scheme 6. Pathways for Fluorination at Both α - and β -C-Atoms. R = Bn, Me, ⁱPr. An intramolecular H-bond is shown between the amine and the amide in compounds **3** and **11**.

Van der Waals contact distance and is consistent with the predicted conformation of α -fluoroamides as a result of dipole relaxation as described in the *Introduction*.

To explore the role of intramolecular H-bonding on the α/β -fluorinated product ratio, the *N*-Me amide **12a** was explored as a substrate. Amide **12a** was prepared by coupling (1*S*)-*N*-methyl-1-phenylethanamine with carboxylic acid **6** (*Scheme 7*). The non *N*-methylated amide **12b** was also prepared as a control (*Scheme 7*).

a) $T3P^{\otimes}$ (1.5 equiv.), amine (2.0 equiv.), $EtN^{i}Pr_{2}$ (4.0 equiv.), $CH_{2}Cl_{2}$, 0° to r.t., 1–12 h. *b*) TBAF (4.0 equiv., 1m THF soln.), AcOH (5.0 equiv.), THF, r.t., 12–24 h. *c*) DAST (1.1 equiv.), THF, 0°, 1 h.

Treatment of *N*-methylated amide **12a** with DAST resulted in an almost exclusive α -fluorination (α/β 99:1) product (*i.e.*, **13a**) and with a dr of 89:11 (*Table 2*). By comparison, amide **12b** had a significantly reduced α -selectivity of 70:30 (α/β) and with a dr of 92:8 (*Table 2*). Thus, *N*-methylation significantly improved formation of the α -fluorinated product. This is consistent with the removal of an intramolecular H-bond in **12a**, competing with aziridinium ring formation (*Scheme 6*).

Table 2. Fluorination Ratios for N-Me and N-H Amide Derivatives 12a and 12b

Entry	Substrate	α/β ratio (13/14)	δ of NH [ppm]	α dr 13	β dr 14
1	12a	> 99 : 1	N/A	89:11	N/A
2	12b	70:30	7.63	92:8	95:5

N-Methyl amides are difficult to demethylate for conversion to their corresponding amides. Therefore, in order to extend the potential of this α -fluorination method, amide *N*-alkylation was explored with a functional group that can be removed after the fluorination reaction. Thus *N*-allyl amide **16** was prepared from **7** with phosphazene P4-Bu [12][13] and allyl amide, followed *via* **15** by silyl deprotection (*Scheme 8*). Treatment of **16** with DAST gave the expected high selectivity for the α -fluorinated regioisomer (α/β 99:1) **17** and the transformation proved to be relatively efficient (73%; dr 90:10; *Scheme 8*). There was no β -fluorinated product observed by ¹⁹F- and ¹H-NMR. Deprotection of the *N*,*N*-diallyl amine **17** was then achieved using catalytic [Pd₂(dba)₃] and thiosalicylic acid, following a procedure reported by *Genêt* and coworkers (*Scheme 9*) and the intermediate amine was subsequently protected as Boc derivative **18** [14].

a) 'Bu P4 Phosphazene (0.93 equiv.), allyl bromide (5.0 equiv.), THF, -100° to -78° to r.t., 20 h, 53%.
b) TBAF (4.0 equiv.), AcOH (5.0 equiv.), THF, r.t., 12 h; 84%. c) DAST, THF, r.t., 1 h; 73%.

a) [Pd₂(dba)₃] (25 mol-%), dppb (30 mol-%), thiosalicylic acid (2.9 equiv.), THF, 60°, 3 h, 93%. *b*) Boc₂O (1.3 equiv.), EtNⁱPr₂ (3.0 equiv.), aq. dioxane (25% (*v*/*v*)), r.t., 24 h; 71%. *c*) 1. [RuHCO(PPh₃)₂] (10 mol-%), toluene, reflux, 3 h; 2. RuCl₃, NaIO₄, 1,2-dichloroethane, H₂O, r.t., 12 h; 59%. *d*) NaHCO₃ (1.0 equiv.), Na₂CO₃ (0.1 equiv.), acetone, H₂O, 10 h; 46%.

This deprotection strategy did not, however, remove the *N*-allyl amide group of **17**. The literature contains a range of methods for the removal of allyl ethers and amines; however, there are only a few examples for the removal of N'-allyl amides [15-17].

Selective removal of the *N*-allyl moiety of **18** was achieved by allyl isomerisation with 10 mol-% [RuHCO(PPh₃)₂], followed by oxidative cleavage with RuCl₃ and NaIO₄, to generate *N*-formyl amide **19** (*Scheme 9*) [18][19]. Subsequent hydrolysis of the formamide moiety of **19** using basic aqueous acetone, furnished the desired secondary amide **20** (*Scheme 9*). Thus, successful removal of the allyl moiety in **18** is the final step in this approach to synthetically useful β -peptide stereoisomers carrying the F-atom at the α -position.

Conclusions. – A method for the preparation of α -fluoro- β -amino dipeptides is reported which generates the dipeptide moiety by direct deoxofluorination/rearrangement of *N*-seryl *N*,*N*-diallyl dipeptides with DAST. Good stereo- and regioselectivity is achieved with the *N*-methyl dipeptide; however, the *N*-methyl group cannot easily be removed after fluorination. *N*-Allyl amides also give high α -fluorinated product ratio, and can be deprotected by a Ru-mediated isomerization, followed by oxidation. Thus a new method to access α -fluoro- β -amino dipeptides is described.

We thank *Cancer Research UK* for a studentship to *D. L. S.* and *D. O'H.* thanks the *ERC* for an Advanced Investigator Award.

Experimental Part

General. All reactions involving the use of organometallic reagents were conducted by standard airfree techniques in *Schlenk* flasks. Dry THF (unstabilised) was obtained from an *mBRAUN SPS-800* solvent purification machine by passage through a drying column packed with 4-Å molecular sieves and dispensed under an inert atmosphere when required. Where appropriate, solvents were degassed by the standard freeze-pump-thaw technique at least three times with freshly dispensed dry solvent. M.p.: *Gallenkamp Griffin MPA350* or *Electrothermal 9100* digital melting point apparatus; uncorrected. Optical rotations: *Perkin Elmer* optical rotation model *341* machine (cell path 1 dm) at 589 nm at ambient temp. (20°) and are denoted as $[\alpha]_{20}^{20}$ in the implied units of 10^{-1} deg cm³ g⁻¹. IR Spectra: *Perkin-Elmer Spectrum GX FT-IR* machine either neat on NaCl plates or were recorded neat on a *Shimadzu Raffinity-1 FT-IR* machine. ¹H-NMR Spectra: at 300, 400, or 500 MHz *Bruker Avance/Avance II* spectrometers. ¹³C-NMR Spectra: at 75, 101, or 126 MHz on *Bruker Avance/Avance II* spectrometers. ¹³F-NMR Spectra: at 282, 376, or 470 MHz on *Bruker Avance/Avance II* spectrometers. NMR spectra were interpreted using iNMR or TopSpin. Resonances were assigned according to chemical shift, multiplicity, reference to 2D spectra, and the literature. Coupling constants (*J*) are reported to 0.1 Hz and are averaged for coupling nuclei. MS: at the *Biomedical Sciences Research Complex* (BSRC), conducted by Mrs. *Caroline Horsburgh* on a *Micromass LCT* electrospray time of flight mass spectrometer by electrospray ionisation. X-Ray analysis of single crystals was conducted by Prof. *Alexandra Slawin* at the University of St Andrews on a *Rigaku Cu MM007* high brilliance generator with *Saturn 92 CCD* and *XStream LT* accessories.

L-Serine Methyl Ester Hydrochloride ([20]). SOCl₂ (13.7 ml, 190 mmol, 1.1 equiv.) was added dropwise to MeOH (180 ml) over 30 min at r.t., followed by L-serine (18.0 g, 170 mmol, 1.0 equiv.) in a portionwise manner. Following consumption of the starting material as indicated by TLC, the solvent was removed *in vacuo*, and the solids were triturated with petroleum ether. Trituration and subsequent evaporation was repeated to remove excess SOCl₂. The product was recrystallized from MeOH to yield the title compound (21.3 g, 140 mmol, 80%). White crystalline solid. M.p. 162–165° ([20]: 163–166°). $[\alpha]_{10}^{20} = +4.3 (c = 4.0, MeOH), ([20]: [\alpha]_{10}^{20} = +3.7 (c = 4.0, MeOH)).$ ¹H-NMR (400 MHz, CD₃OD): 4.91 (br. s, OH); 4.19 (dd, J = 4.4, 3.5, CHN); 4.04 (dd, $J = 11.9, 4.4, CH_aH_bOH$); 3.98 (dd, $J = 11.9, 3.5, CH_aH_bOH$); 3.88 (s, Me).

Methyl (–)-(2S)-(*Diallylamino*)-3-hydroxypropanoate (= *Methyl* N,N-*Diprop*-2-en-1-yl-L-serinate; **9**). Allyl bromide (12.2 ml, 141 mmol, 2.2 equiv.) was added to a suspension of L-serine methyl ester hydrochloride (10.0 g, 64.8 mmol, 1.0 equiv.) and K₂CO₃ (35.6 g, 258 mmol, 4.0 equiv.) in MeCN (300 ml), and the resulting suspension was heated under reflux for 24 h. The mixture was cooled to r.t., diluted with H₂O (300 ml), and extracted with AcOEt (3×100 ml). The org. fractions were combined, washed with brine (100 ml), dried (Na₂SO₄), filtered, and the solvent was removed *in vacuo*. The resulting oil was purified by CC (SiO₂; hexane/AcOEt 95 :5 to 90 :10) to yield **9** (7.02 g, 36.5 mmol, 57%). Colourless oil. *R*_f (hexane/AcOEt 90 :10) 0.1. [*a*]_D²⁰ = -81.3 (*c* = 2.9, CHCl₃). IR (neat): 3446 (OH), 2926 (C=CH), 1730 (C=O), 1645, 993, 920. ¹H-NMR (400 MHz, CDCl₃): 5.75 (*dddd*, *J* = 172, 10.1, 7.9, 4.8, 2 H–C(allyl)); 5.20 (*dddd*, *J* = 17.2, 1.8, 1.1, 1.1, 2 CH_aH_b(allyl)); 5.14 (*dddd*, *J* = 10.1, 1.8, 0.9, 0.9, 2 CH_aH_b(allyl)); 3.70 (*s*, MeO); 3.75 (*dd*, *J* = 9.2, 4.6, CHN); 3.67 (*dd*, *J* = 14.3, 4.6, OCH_aH_b); 3.64 (*d*, *J* = 14.3, 9.2, OCH_aH_b); 3.36 (*dddd*, *J* = 14.3, 4.8, 1.1, 0.9, 2 NCH_aH_b(allyl)); 3.20 – 3.14 (*m*, 2 NCH_aH_b(allyl)); 2.63 (br. *s*, OH). ¹³C-NMR (101 MHz, CDCl₃): 171.8 (COOMe); 135.9 (2 CH(allyl)); 118.1 (2 CH₂(allyl)); 62.5 (CHN); 59.1 (CH₂OH); 53.7 (2 CH₂N); 51.5 (MeO). ESI-MS (pos.): 200 (100, [*M* + H]⁺). HR-ESI-MS (pos.): 200.1277 ([*M* + H]⁺, C₁₀H₁₈NO₃⁺; calc. 200.1276).

Methyl (+)-(2R)-3-(Diallylamino)-2-fluoropropanoate (= Methyl (2R)-3-[Di(prop-2-en-1-yl)amino]-2-fluoropropanoate; 10). N,N'-Diethylaminosulfur trifluoride (DAST; 2.5 ml, 18.9 mmol, 1.2 equiv.) was added to a soln. of 9 (3.10 g, 15.6 mmol, 1.0 equiv.) in THF (80 ml) over a period of 5 min at 0°. The resulting soln. was stirred at 0° for 1 h, and the reaction was quenched by the addition of solid K₂CO₃ (excess) and H₂O (1 ml). As the effervescence subsided, the soln. was diluted further with H₂O (20 ml), and the org. fractions were extracted with Et₂O (3×20 ml). The org. fractions were combined and washed with brine (20 ml), dried (Na₂SO₄), filtered, and the solvent was removed in vacuo. The resulting oil was purified by CC (SiO₂; hexane/AcOEt 95:5) to yield 10 (2.19 g, 10.9 mmol, 69%). Colourless oil. $R_{\rm f}$ (hexane/AcOEt 95:5) 0.15. IR (neat): 2956, 2815, 1767 (C=O), 1643, 1440, 1214, 1069, 923. $[\alpha]_{20}^{20} =$ +9.8 (c = 0.97, CHCl₃). ¹H-NMR (400 MHz, CDCl₃): 5.80 (dddd, J = 17.2, 10.2, 7.0, 6.0, 2 H–C(allyl)); 5.20-5.13 (m, 2 CH₂(allyl)); 5.05 (ddd, J = 49.7, 6.3, 3.2, CHF); 3.73 (s, MeO); 3.29-3.23 (m, 2) NCH_aH_b(allyl)); 3.15-3.09 (m, 2 NCH_aH_b(allyl)); 2.99 (ddd, J = 25.8, 14.7, 6.3, CH_aH_bCHF); 2.97 (ddd, $J = 26.6, 14.7, 3.2, CH_aH_bCHF$). ¹³C-NMR (101 MHz, CDCl₃): 169.5 (d, J = 23.5, CONH); 135.3 (2) CH(allyl)); 118.0 (2 CH₂(allyl)); 89.5 (d, J = 186.1, CHF); 57.6 (2 NCH₂(allyl)); 54.2 (d, J = 20.2, CH_2CHF); 52.4 (MeO). ¹⁹F-NMR (376 MHz, CDCl₃): -191.9 (*ddd*, J = 49.7, 26.6, 25.8, CHF). ESI-MS (pos.): 202 (100, $[M+H]^+$). HR-ESI-MS (pos.): 202.1235 ($[M+H]^+$, $C_{10}H_{17}NO_2F^+$; calc. 202.1233).

2338

Enantiomeric excess (ee) determined by chiral HPLC (*Chiralcel OD-H* 5% ⁱPrOH in hexane, 0.5 ml/min, $t_{\rm R}$ (major) 9.33 >95%, $t_{\rm R}$ (minor) 9.57 min < 5%).

General Procedure 1 (GP 1). The appropriate quantities of (-)-(2S)-3-[(tert-butyl)dimethylsilyloxy]-2-(N,N-diallylamino)propanoic acid (=O-[(tert-butyl)(dimethyl)silyl]-N,N-diprop-2-en-1-yl-Lserine; **6**; 1.0 equiv.), EtNⁱPr₂ (4.0 equiv.), and amino ester (2.0 equiv.) in CH₂Cl₂ (1.0 ml mmol⁻¹) were cooled to 0° and propylphosphonic anhydride $(T3P^{\circledast}; 50\% (w/w)$ in AcOEt, 2.0 equiv.) was added dropwise. The soln. was maintained at 0° for a further 30 min before being warmed to r.t. and stirred until TLC indicated consumption of the starting material. The reaction was quenched by the addition of HCI (1M, 10 ml), and the aq. phase was extracted with AcOEt (2 × 10 ml). The combined org. phases were washed sequentially with HCI (1M, 3 × 10 ml), sat. aq. Na₂CO₃ (3 × 10 ml), brine (20 ml), and dried (Na₂SO₄). The solvent was removed *in vacuo* and the product purified by CC (SiO₂; AcOEt/hexane).

General Procedure 2 (GP 2). Bu₄NF (TBAF; 1M in THF, 4.0 equiv.) was added dropwise to siluprotected dipeptide (1.0 equiv.) and AcOH (5.0 equiv.) in THF (8.0 ml mmol⁻¹), and the resulting mixture was stirred at r.t. The reaction was quenched by the addition of H_2O (5 ml), followed by AcOEt (10 ml). The org. phases were washed successively with H_2O (2 × 5 ml) and brine (10 ml), dried (Na₂SO₄), and the solvent was removed *in vacuo*. The product was purified by CC (SiO₂; AcOEt/hexane).

General Procedure 3 (GP 3). DAST (1.5 equiv.) was added dropwise to a soln. of the appropriate amino alcohol dipeptide (1.0 equiv.) in THF (5.0 ml mmol⁻¹) at 0°. The resulting soln. was stirred at 0° for 1 h before quenching the reaction by the addition of NaHCO₃ (solid) and H₂O, until the soln. was basic (pH > 9) and effervescence subsided. The aq. phase was extracted with Et₂O (3×10 ml), and the combined org. phases were washed with brine, dried (Na₂SO₄), filtered, and the solvent was removed *in vacuo*. The product mixtures were purified by CC (SiO₂; AcOEt/hexane), separating the α - and β -fluorinated regioisomers where applicable.

Methyl (-)-(2S)-3-[(tert-Butyl)dimethylsilyloxy]-2-(N,N-diallylamino)propanoate (= Methyl O-[(tert-Butyl)(dimethyl)silyl]-N,N-diprop-2-en-1-yl-L-serinate). Et₃N (16.0 ml, 115 mmol, 4.5 equiv.) was added dropwise over 30 min to a soln. of 9 (5.00 g, 25.1 mmol, 1.0 equiv.) and TBDMSOTF (9.00 ml, 39.1 mmol, 1.8 equiv.) in CH_2Cl_2 (230 ml) at 0°. The mixture was brought to r.t. and stirred for 16 h, and the reaction was quenched by the addition of MeOH (40 ml), followed by sat. aq. Na₂CO₃ (100 ml). The org. phase was separated and the aq. phase was extracted with CH_2Cl_2 (3 × 100 ml). The org. phases were combined, dried (Na₂SO₄), and the solvent was removed *in vacuo*. The oil was purified by CC (SiO₂; hexane/AcOEt 95:5), to yield the title compound (6.52 g, 20.8 mmol, 83%). Colourless oil. R_f (hexane/ AcOEt 90:10) 0.5. $[a]_{D}^{20} = -18.1$ (c = 0.6, CHCl₃). IR (neat): 2951, 2929, 1735 (C=O), 1251 (Si-C), 1103, 918 (Si–C). ¹H-NMR (400 MHz, CDCl₃): 5.78 (*dddd*, J = 17.2, 10.1, 7.0, 5.4, 2 CH(allyl)); 5.21 – 5.09 (m, 2 CH₂(allyl)); 3.93 (dd, $J = 9.9, 7.0, OCH_aH_b$); 3.82 (dd, $J = 9.9, 5.6, OCH_aH_b$); 3.61 (dd, $J = 9.9, 5.6, OCH_bH_b$); 3.61 (dd, J = 9.9, 5.6, OCH_bH_bH_b); 3.61 (dd, J = 9.9, 5.6, OCH_bH_bH_bH_b); 3.61 (dd, J = 9.9, 5.6, OCH_bH_bH_bH_bH_bH_b); 3.61 (dd, J = 9.9, 5.6, OCH_bH_bH_bH_bH_ 7.0, 5.6, CHN); 3.38-3.32 (m, 2 CH₂N); 3.15 (s, MeO); 0.86 (s, 'Bu); 0.03 (s, 2 MeSi). ¹³C-NMR (101 MHz, CDCl₃): 172.4 (COOMe); 136.7 (2 CH(allyl)); 117.2 (2 CH₂(allyl)); 64.2 (CHN); 62.9 (CH₂); 54.6 (2 NCH₂(allyl)); 51.2 (MeO); 25.9 (Me₃C); 18.3 (SiC); -5.4 (2 MeSi). ESI-MS (pos.): 314 (100, $[M + H]^+$). HR-ESI-MS (pos.): 314.2156 ($[M + H]^+$, $C_{16}H_{32}NO_3Si^+$; calc. 314.2151). ee determined by chiral HPLC (Chiralcel OD-H, 5% PrOH in hexane, 0.25 ml/min; t_R(major) 7.08 min).

Compound **6**. LiOH \cdot H₂O (3.37 g, 80.4 mmol, 4.0 equiv.) was added portionwise to a soln. of methyl (2*S*)-3-[(*tert*-butyl)dimethylsilyloxy)-2-(*N*,*N*-diallylamino)propanoate (6.30 g, 20.1 mmol, 1.0 equiv.) in 150 ml of THF/H₂O/MeOH 20:20:60, and the mixture was stirred for 24 h at r.t. The reaction was quenched by neutralisation with HCl (1M, 60 ml), and the aq. phase was extracted with CH₂Cl₂ (3 × 50 ml). The combined org. phases were dried (Na₂SO₄), filtered, and the solvent was removed *in vacuo* to yield **6** (5.41 g, 18.1 mmol, 90%) as a colourless gum, which was used without any further purification. $[\alpha]_{D}^{20} = -3.1 (c = 1.7, MeOH)$. IR (neat): 2927, 2856, 1635 (C=O), 1417, 1257 (Si–C), 1087, 918 (Si–C). ¹H-NMR (300 MHz, CD₃OD): 5.90 (*dddd*, *J* = 17.0, 10.3, 6.6, 6.6, 2 H–C(allyl)); 5.27–5.12 (*m*, 2 CH₂(allyl)); 4.01 (*dd*, *J* = 10.7, 5.2, OCH₄H_b); 3.92 (*dd*, *J* = 10.7, 6.8, OCH₄H_b); 3.47 (*dd*, *J* = 6.8, 5.2, CHN); 3.40 (*m*, 2 NCH₂(allyl)); 0.91 (*s*, 'Bu); 0.08 (*s*, 2 MeSi). ¹³C-NMR (75 MHz, CD₃OD): 178.3 (COOH); 135.0 (2 CH(allyl)); 118.5 (2 CH₂(allyl)); 68.5 (CHN); 64.4 (CH₂O); 55.5 (2 NCH₂(allyl)); 26.5 (*Me₃*C); 19.2 (SiC); -5.1 (2 MeSi). ESI-MS (pos.): 322 (100, [*M* + Na]⁺), 300 (5, [*M* + H]⁺). HR-ESI-MS (pos.): 300.2004 ([*M* + H]⁺, C₁₅H₃₀NO₃Si⁺; calc. 300.1995).

Methyl O-[(tert-*Butyl*)(*dimethyl*)*sily*]-N,N-*di*(*prop*-2-*en*-1-*y*)-L-*sery*]-L-*phenylalaninate* (**7a**). Following *GP*1: starting with **6**; 1.00 g, 3.34 mmol), L-phenylalanine methyl ester hydrochloride (1.44 g, 6.68 mmol), EtNⁱPr₂ (2.30 ml, 13.2 mmol), and *T3P* (50% *w*/*w* in AcOEt, 2.33 ml), the reaction yielded **7a** (1.25 g, 2.71 mmol, 81%). Colourless oil. *R*_f (hexane/AcOEt 90:10) 0.35. $[\alpha]_{D}^{20} = +15.0$ (c = 0.6, CHCl₃). IR (neat): 3361 (NH), 2953, 1747 (C=O), 1670 (C=O), 1496 (NH), 1093, 920 (Si–C). ¹H-NMR (400 MHz, CDCl₃): 7.90 (d, J = 7.9, CONH); 7.28 – 7.08 (m, 5 arom. H); 5.61 (dddd, J = 17.0, 10.4, 6.4, 6.4, 2 CH(allyl)); 5.14 – 5.04 (m, 2 CH₂(allyl)); 4.80 (dt, J = 7.9, 6.2, CH($\alpha + 1$)); 4.14 (dd, J = 11.1, 4.0, OCH_aH_b); 3.90 (dd, J = 11.1, 8.3, OCH_aH_b); 3.71 (s, MeO); 3.53 (dd, J = 8.3, 4.0, CH(α)); 3.21 (m, 2 NCH₂(allyl)); 3.17 – 3.02 (m, CH₂Ph); 0.86 (s, 'Bu); 0.03 (s, 2 MeSi). ¹³C-NMR (101 MHz, CDCl₃): 172.1 (CONH); 171.9 (COOMe); 136.4 (arom. C); 136.2 (2 CH(allyl)); 129.3 (2 arom. CH); 128.6 (2 arom. CH); 127.1 (arom. CH); 117.3 (2 CH₂(allyl)); 63.9 (CH(α)); 61.3 (CH₂O); 53.9 (2 NCH₂(allyl))); 53.0 (CH($\alpha + 1$)); 52.3 (MeO); 38.1 (CH₂Ph); 26.0 (Me_3 C); 18.2 (SiC); -5.5 (MeSi). ESI-MS (pos.): 483 (30, [M + Na]⁺), 461 (100, [M + H]⁺). HR-ESI-MS (pos.): 483.2643 ([M + Na]⁺, C₂₅H₄₀N₂NaO₄Si⁺; calc. 483.2655).

Methyl O-[(tert-*Butyl*)(*dimethyl*)*sily*]-N,N-*di*(*prop*-2-*en*-1-*y*)-L-*sery*]-L-*alaninate* (**7b**). Following *GP* 1: starting with **6** (198 mg, 0.661 mmol), L-alanine methyl ester hydrochloride (185 mg, 1.32 mmol), EtNⁱPr₂ (460 µl, 0.342 mmol), and *T3P* (460 µl, 50% (*w*/*w*) in AcOEt), the reaction yielded **7b** (215 mg, 0.559 mmol, 85%). Colourless oil. R_f (hexane/AcOEt 90:10) 0.2. $[\alpha]_D^{3D} = -7.5$ (c = 0.4, CHCl₃). ¹H-NMR (400 MHz, CDCl₃): 7.94 (d, J = 7.6, CONH); 5.83 (dddd, J = 17.1, 10.3, 6.8, 5.6, 2 CH(allyl)); 5.24–5.13 (*m*, 2 CH₂(allyl)); 4.54 (dq, J = 7.6, 7.2, CH(α + 1)); 4.17 (dd, J = 11.1, 4.1, OCH_aH_b); 3.97 (dd, J = 11.1, 7.6, OCH_aH_b); 3.72 (s, MeO); 3.53 (dd, J = 7.6, 4.1, CH(α)); 3.39–3.29 (*m*, 2 CH₂N); 1.37 (d, J = 7.2, Me – CH); 0.89 (s, 'Bu); 0.06 (s, 2 MeSi). ¹³C-NMR (101 MHz, CDCl₃): 173.5 (CONH); 171.8 (COOMe); 136.2 (2 CH(allyl)); 117.5 (2 CH₂(allyl)); 64.1 (CH(α)); 61.3 (CH₂O); 54.0 (2 NCH₂(allyl)); 52.5 (MeO); 47.7 (CH(α + 1)); 25.9 (Me_3 C); 18.7 (MeCH); 18.2 (SiC); – 5.4 (MeSi); – 5.5 (MeSi). ESI-MS (pos.): 407 (50, [M + Na]⁺), 385 (100, [M + H]⁺). HR-ESI-MS (pos.): 407.2339 ([M + Na]⁺, C₁9H₃₆N₂NaO₄Si⁺; calc. 407.2342).

Methyl O-[(tert-*Butyl*)(*dimethyl*)*sily*]-N,N-*di*(*prop-2-en-1-yl*)-L-*sery*]-L-*valinate* (**7c**). Following *GP* 1: starting with **6** (205 mg, 0.685 mmol), L-valine methyl ester hydrochloride (330 mg, 1.37 mmol), EtNⁱPr₂ (480 µl, 2.76 mmol), and *T3P* (480 µl, 50% (*w*/*w*) in AcOEt), the reaction yielded **7c** (224 mg, 0.590 mmol, 79%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 90:10) 0.3. $[a]_{\rm D}^{20} = -37.0$ (c = 0.8, CHCl₃). IR (neat): 3365 (NH), 2954, 1745 (C=O), 1680 (C=O), 1496 (NH), 920 (Si–C). ¹H-NMR (400 MHz, CDCl₃): 8.01 (d, J = 9.3, CONH); 5.83 (dddd, J = 17.2, 10.2, 7.0, 4.8, 2 CH(allyl)); 5.26–5.14 (m, 2 CH₂(allyl)); 4.49 (dd, J = 9.3, 4.7, CH(a + 1)); 4.20 (dd, J = 11.1, 4.0, OCH_aH_b); 4.00 (dd, J = 11.1, 8.0, OCH_aH_b); 3.75 (s, MeO); 3.59 (dd, J = 8.0, 4.0, CH(a)); 3.43–3.30 (m, 2 NCH₂(allyl)); 2.21–2.13 (m, Me₂CH); 0.92–0.86 (m, Me₂CH, 'Bu); 0.06 (s, 2 MeSi). ¹³C-NMR (101 MHz, CDCl₃): 172.4 (CONH); 172.0 (COOMe); 136.2 (2 CH(allyl)); 117.4 (2 CH₂(allyl)); 64.0 (CH(a)); 61.3 (CH₂O); 56.9 (CH(a + 1)); 54.0 (2 NCH₂(allyl)); 52.1 (MeO); 31.3 (CH); 26.0 (Me_3 C); 19.3 (Me); 18.2 (SiC); 17.8 (Me); – 5.5 (2 MeSi). ESI-MS (pos.): 435 (5, [M + Na]⁺), 413 (100, [M + H]⁺). HR-ESI-MS (pos.): 435.2654 ([M + Na]⁺, C₂₁H₄₀N₂NaO₄Si⁺; calc. 435.2655).

Cyclo(N,N-bisallyl-(S)-seryl-(S)-phenylalanine) (=(3S,6S,10S,13S)-3,10-Dibenzyl-6,13-bis[di-(prop-2-en-1-yl)amino]-1,8-dioxa-4,11-diazacyclotetradecane-2,5,9,12-tetrone; **8**). TBAF (870 µl, 1M in THF, 4.0 equiv.) was added dropwise to **7a** (100 mg, 0.217 mmol, 1.0 equiv.) in dry THF (1.5 ml) and the mixture was stirred at r.t. for 2 h. The reaction was quenched by the addition of H₂O (5 ml), followed by AcOEt (10 ml). The org. phases were washed successively with H₂O (2 × 5 ml) and brine (10 ml), dried (Na₂SO₄), and the solvent was removed *in vacuo*. The product was purified by CC (SiO₂, AcOEt/hexane 20:80) to yield **8** (18.4 mg, 0.029 mmol, 27%). Colourless solid. M.p. 170–172° (AcOEt). [α]₂₀²⁰ = -83.9 (c = 0.3, MeOH); IR (NaCl plate); 3359 (NH), 3303, 2928, 1716 (C=O), 1663 (C=O), 1551 (NH), 1261 (C–O–C). ¹H-NMR (400 MHz, CDCl₃): 7.31–7.14 (*m*, 10 arom. H); 6.65 (*d*, *J* = 7.5, 2 NH); 5.57 (*dddd*, *J* = 17.0, 10.4, 6.6, 5.7, 4 CH(allyl)); 5.12–5.06 (*m*, 4 CH₂(allyl)); 4.52 (*dd*, *J* = 11.1, 3.3, 2 CH_aH_bCHN); 4.54–4.38 (*m*, 2 CH(α + 1)); 4.40 (*dd*, *J* = 11.1, 6.2, 2 CH_aH_bCHN); 3.39 (*dd*, *J* = 6.2, 3.3, 2 CH(α)); 3.30 (*dd*, *J* = 14.3, 4.8, 2 CH_aH_bPh); 3.16 (*dd*, *J* = 14.3, 10.0, 2 CH_aH_bPh); 3.10–3.05 (*m*, 4 CH_aH_b(allyl)); 2.99–2.93 (*m*, 4 CH_aH_b(allyl)). ¹³C-NMR (101 MHz, CDCl₃): 170.6 (2 COOCH₂); 170.1 (2 CONH); 137.5 (2 arom. C); 135.8 (4 CH(allyl)); 129.3 (4 arom. CH); 128.8 (4 arom. CH); 127.0 (2 arom. CH); 117.9 (4 CH₂(allyl)); 61.4 (2 CH(α)); 60.1 (2 CH₂CHN); 53.9 (2 CH(α +1)); 53.7 (4 NCH₂(allyl)); 35.7 (2 CH₂Ph). ESI-MS (pos.): 667 (40, [M+K]⁺), 651 (100, [M+Na]⁺). HR-ESI-MS (pos.): 651.3154 ([M+Na]⁺, C₃₆H₄₄N₄NaO₆⁺; calc. 651.3153).

Methyl N,N-*Di*(*prop*-2-*en*-1-*yl*)-L-*seryl*-L-*phenylalaninate* (**3a**). Following *GP* 2: starting with **7a** (220 mg, 0.478 mmol), AcOH (140 µl, 2.45 mmol), and TBAF (1.88 ml, 1_M in THF), the reaction yielded **3a** (121 mg, 0.349 mmol, 73%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 70:30) 0.10. $[\alpha]_{\rm D}^{20} = +28.1$ (*c* = 1.15, CHCl₃). IR (neat): 3349 (OH), 2955, 1744 (C=O), 1659 (C=O), 1513, 1254, 1032. ¹H-NMR (500 MHz, CDCl₃): 7.75 (*d*, *J* = 7.7, CONH); 7.31 – 7.09 (*m*, 5 arom. H); 5.57 (*dddd*, *J* = 17.3, 10.0, 7.5, 4.5, 2 CH(allyl)); 5.16 – 5.10 (*m*, 2 CH₂(allyl)); 4.85 (*ddd*, *J* = 7.7, 7.3, 5.7, CH(α + 1)); 3.85 (*dd*, *J* = 11.2, 7.6, OCH_aH_b); 3.76 (*s*, MeO); 3.75 (*dd*, *J* = 11.2, 4.1, OCH_aH_b); 3.41 (*dd*, *J* = 7.6, 4.1, CH(α)); 3.25 (*dd*, *J* = 14.0, 5.7, CH_aH_bPh); 3.15 – 3.11 (*m*, 2 CH_aH_b(allyl), CH₂OH); 3.06 (*dd*, *J* = 14.0, 7.3, CH_aH_bPh); 2.96 – 2.92 (*m*, 2 CH_aH_b(allyl)). ¹³C-NMR (126 MHz, CDCl₃): 174.3 (CONH); 172.0 (COOMe); 135.9 (arom. C); 135.5 (2 CH(allyl)); 129.2 (2 arom. CH); 128.8 (2 arom. CH); 127.3 (arom. CH); 118.1 (2 CH₂(allyl)); 62.9 (CH(α)); 58.5 (CH₂O); 53.5 (2 NCH₂(allyl)); 52.9 (CH(α + 1)); 52.6 (MeO); 38.0 (CH₂Ph). ESI-MS (pos.): 369 (100, [*M* + Na]⁺). HR-ESI-MS (pos.): 369.1782 ([*M* + Na]⁺, C₁₉H₂₆N₂NaO⁴₄; calc. 369.1790).

Methyl N,N-*Di*(*prop-2-en-1-yl*)-L-*seryl*-L-*alaninate* (**3b**). Following *GP 2:* starting with **7b** (195 mg, 0.507 mmol), AcOH (150 µl, 2.62 mmol) and TBAF (2.10 ml, 1M in THF), the reaction yielded **3b** (121 mg, 0.448 mmol, 88%). Colourless oil: R_f (hexane/AcOEt 80:20) 0.1. $[\alpha]_{D}^{20} = +12.0$ (c = 0.7, CHCl₃). IR (neat): 3356 (OH/NH), 3076, 2981, 1743 (C=O), 1653 (C=O), 1521 (NH), 1219, 1155. ¹H-NMR (400 MHz, CDCl₃): 7.83 (d, J = 7.0, CONH); 5.79 (dddd, J = 17.3, 10.1, 7.3, 4.7, 2 CH(allyl)); 5.27 – 5.17 (m, 2 CH₂(allyl)); 4.57 (dq, J = 7.2, 7.0, CH($\alpha + 1$)); 3.95 (dd, J = 11.2, 7.7, OCH_aH_b); 3.84 – 3.81 (dd, J = 11.2, 4.1, OCH_aH_b); 3.76 (s, MeO); 3.48 (dd, J = 7.7, 4.1, CH(α)); 3.41 (br. s, OH); 3.33 – 3.28 (m, 2 CH_aH_b(allyl)); 3.11 – 3.06 (m, 2 CH_aH_b(allyl)); 118.2 (2 CH₂(allyl))); 62.8 (CH(α)); 58.4 (CH₂O); 53.7 (2 CH₂(allyl)); 52.7 (MeO); 47.8 (CH($\alpha + 1$)); 18.6 (*Me*CH). ESI-MS (pos.): 293 (100, [M + Na]⁺). HR-ESI-MS (pos.): 293.1471 ([M + Na]⁺, C₁₃H₂₂N₂NaO₄⁺; calc. 293.1477).

Methyl N,N-*Di*(*prop*-2-*en*-1-*yl*)-L-*seryl*-L-*valinate* (**3c**). Following *GP* 2: starting with **7c** (201 mg, 0.487 mmol), AcOH (140 µl, 2.45 mmol), and TBAF (1.90 ml, 1M in THF), the reaction yielded **3c** (108 mg, 0.363 mmol, 75%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 80:20) 0.13. $[\alpha]_{\rm D}^{20} = +6.9$ (c = 0.5, CHCl₃). IR (neat): 3361 (OH), 2960, 2821, 1741 (C=O), 1660 (C=O), 1500 (NH), 1149. ¹H-NMR (300 MHz, CDCl₃): 7.87 (d, J = 9.0, CONH); 5.80 (dddd, J = 17.3, 10.1, 7.3, 4.4, 2 CH(allyl)); 5.30–5.18 (m, 2 CH₂(allyl)); 4.53 (dd, J = 9.0, 4.7, CH($\alpha + 1$)); 3.99–3.83 (m, CH₂OH); 3.75 (s, MeO); 3.51 (dd, J = 7.5, 4.1, CH(α)); 3.43 (br. s, OH); 3.39–3.32 (m, 2 CH_aH_b(allyl)); 3.13–3.06 (m, 2 CH_aH_b(allyl)); 2.21 (qqd, J = 6.9, 6.9, 4.7, Me₂CH); 0.94 (d, J = 6.9, Me); 0.90 (d, J = 6.9, Me). ¹³C-NMR (75.0 MHz, CDCl₃): 174.4 (CONH); 172.2 (COOMe); 135.4 (2 CH(allyl)); 118.1 (2 CH₂(allyl))); 63.1 (CH(α)); 58.5 (CH($\alpha + 1$)); 56.9 (MeO); 53.6 (2 NCH₂(allyl)); 52.3 (CH₂O); 31.3 (Me₂CH); 19.3 (*Me*CH); 17.9 (*Me*CH). ESI-MS (pos.): 321 (100, [M + Na]⁺). HR-ESI-MS (pos.): 321.1787 ([M + Na]⁺, C₁₅H₂₆N₂NaO₄⁺; calc. 321.1790).

(+)-N,N-Diallyl-(2R)-β²-Ala(α-F)-(2S)-Phe-OMe (= Methyl N-{(2R)-3-[Di(prop-2-en-1-yl)amino]-2-fluoropropanoyl]-L-phenylalaninate; **4a**) and (+)-N,N-Diallyl-(2S)-Ser(β-F)-(2S)-Phe-OMe (= Methyl 3-Fluoro-N,N-di(prop-2-en-1-yl)-L-alanyl-L-phenylalaninate; **5a**). Following GP 3: starting with **3a** (181 mg, 0.522 mmol) and DAST (90.0 μl, 0.682 mmol), the reaction yielded **4a** (78.1 mg, 0.224 mmol, 43%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 70:30) 0.24. $[\alpha]_{\rm D}^{20}$ = +69.8 (c = 2.3, CHCl₃). IR (neat): 3429 (NH), 3070, 2924, 1747 (C=O), 1676 (C=O), 1525 (NH), 1278, 1217. ¹H-NMR (500 MHz, CDCl₃): 7.22-7.03 (m, 5 arom. H); 6.94 (br. d, J = 4.7, CONH); 5.71 (dddd, J = 17.0, 10.3, 6.5, 6.5, 2 CH(allyl)); 5.11-5.05 (m, 2 CH₂(allyl)); 4.90 (ddd, J = 49.9, 7.1, 2.8, CHF); 4.83-4.79 (m, CH(α +1))); 3.67 (s, MeO); 3.14-3.03 (m, 2 NCH₂(allyl), CH₂Ph); 2.94 (ddd, J = 30.1, 14.9, 2.8, CH_aH_bCHF); 2.84 (ddd, J = 23.9, 14.9, 7.1, CH_aH_bCHF). ¹³C-NMR (125 MHz, CDCl₃): 171.5 (COOMe); 168.6 (d, J = 20.0, CONH); 135.6 (arom. C); 135.1 (2 CH(allyl)); 129.3 (2 arom. CH); 128.7 (2 arom. CH); 127.3 (arom. CH); 118.1 (2 CH₂(allyl)); 91.2 (d, J = 187.8, CHF); 57.4 (CH(α +1)); 54.5 (d, J = 19.3, CH₂CHF); 52.9 (2 NCH₂(allyl)); 52.5 (MeO); 3.80 (CH₂Ph). ¹⁹F-NMR (470 MHz, CDCl₃): -190.7 (dddd, J = 49.9, 30.1, 2.9, 4.0, CHF). ESI-MS (pos.): 371 (100, [M + Na]⁺). HR-ESI-MS (pos.): 371.1741 ([M + Na]⁺, C₁₉H₂₅FN₂NaO⁺₃; calc. 371.1747).

Further elution of the mixture from the above preparation furnished **5a** (68.8 mg, 0.197 mmol, 38%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 70:30) 0.15. $[\alpha]_{20}^{20} = +21.9$ (c = 2.8, CHCl₃). IR (neat): 3360 (NH), 2951, 1743 (C=O), 1674 (C=O), 1496 (NH), 1201, 1006. ¹H-NMR (500 MHz, CDCl₃): 7.75 (d, J = 7.7, CONH); 7.21 – 7.02 (m, 5 arom. H); 5.53 (dddd, J = 17.4, 10.0, 7.5, 4.6, 2 CH(allyl)); 5.10 – 5.03 (m, 2 CH₂(allyl)); 4.89 – 4.70 (m, CH₂F, CH($\alpha + 1$)); 3.68 (s, MeO); 3.62 (ddd, J = 23.9, 6.7, 3.5, CH(α)–CH₂F); 3.17 – 2.99 (m, 2 NCH₂(allyl), CH₂Ph). ¹³C-NMR (125 MHz, CDCl₃): 172.0 (COOMe); 170.1 (d, J = 10.3, CONH); 135.9 (arom. C); 135.4 (2 CH(allyl)); 129.2 (2 arom. CH); 128.7 (2 arom. CH); 127.2 (arom. CH); 118.1 (2 CH₂(allyl)); 81.1 (d, J = 171.1, CH₂F), 62.6 (d, J = 18.9, CH(α)); 53.9 (2 NCH₂(allyl)); 53.0 (CH($\alpha + 1$)); 52.5 (MeO); 379 (CH₂Ph). ¹⁹F-NMR (470 MHz, CDCl₃): - 227.1 (dt, J = 47.2, 23.9, CH₂F). ESI-MS (pos.): 371 (100, [M + Na]⁺). HR-ESI-MS (pos.): 371.1746 ([M + Na]⁺, C₁₉H₂₅FN₂NaO⁺₃; calc. 371.1747).

(+)-N,N-*Diallyl*-(2R)-β²-*Ala*(α-*F*)-(2S)-*Ala*-*OMe* (= *Methyl* N-*f*(2R)-3-*fDi*(*prop*-2-*en*-1-*yl*)*amino*]-2-*fluoropropanoyl*]-L-*alaninate*; **4b**) *and* (–)-N,N-*Diallyl*-(2S)-*Ser*(β-*F*)-(2S)-*Ala*-*OMe* (= *Methyl 3*-*Fluoro*-N,N-*di*(*prop*-2-*en*-1-*yl*)-L-*alanyl*-L-*alaninate*; **5b**). Following *GP* 3: starting with **3b** (98.5 mg, 0.366 mmol) and DAST (65.9 mg, 54 µl, 0.409 mmol), the reaction yielded **4b** (18.9 mg, 69.4 µmol, 18%). Colourless oil: *R*_f (hexane/AcOEt 80:20) 0.34. $[a]_D^{2D}$ = +15.2 (*c* = 1.8, CHCl₃). ¹H-NMR (400 MHz, CDCl₃): 7.03 – 7.02 (*m*, CONH); 5.83 (*dddd*, *J* = 17.0, 10.3, 6.6, 6.6, 2 CH(allyl)); 5.21 – 5.14 (*m*, 2 CH₂(allyl)); 5.00 (*ddd*, *J* = 50.1, 7.2, 2.8, CHF); 4.63 – 4.59 (*dq*, *J* = 7.2, 6.7, CH(*a*+1)); 3.76 (*s*, MeO); 3.26 – 3.14 (*m*, 2 NCH₂(allyl)); 3.05 (*ddd*, *J* = 30.7, 14.9, 2.8, CH_aH_bCHF); 2.94 (*ddd*, *J* = 24.0, 14.9, 7.2, CH_aH_bCHF); 1.45 (*d*, *J* = 7.2, Me). ¹³C-NMR (101 MHz, CDCl₃): 173.0 (COOMe); 168.6 (*d*, *J* = 19.1, CONH); 135.2 (2 CH(allyl)); 118.2 (2 CH₂(allyl)); 91.4 (*d*, *J* = 187.9, CHF); 57.6 (2 NCH₂(allyl)); 54.7 (*d*, *J* = 19.1, CH₂); 52.7 (CH(*a* + 1)); 47.8 (MeO); 18.5 (Me). ¹⁹F-NMR (376 MHz, CDCl₃): - 191.0 (*dddd*, *J* = 50.1, 30.7, 24.0, 3.7, CHF). ESI-MS (pos.): 273 (100, [*M* + H]⁺). HR-ESI-MS (pos.): 273.1621 ([*M* + H]⁺, C₁₃H₂₂F₂N₂O⁺; calc. 273.1614).

Further elution of the mixture from the above preparation furnished **5b** (36.3 mg, 0.133 mmol, 36%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 80:20) 0.20. $[\alpha]_{\rm D}^{20} = -1.7$ (c = 3.6, CHCl₃). IR (neat): 3365 (NH), 2983, 1745 (C=O), 1674 (C=O), 1500 (NH), 1450, 1157. ¹H-NMR (400 MHz, CDCl₃): 7.88 (d, J = 7.2, CONH); 5.82 (dddd, J = 17.3, 10.1, 7.3, 4.9, 2 CH(allyl)); 5.28 – 5.18 (m, 2 CH₂(allyl)); 4.96 (ddd, J = 46.7, 10.3, 3.5, CH_aH_bF); 4.90 ($ddd, J = 47.8, 10.3, 6.6, CH_aH_bF$); 4.56 ($dq, J = 7.2, 7.2, CH(\alpha + 1)$); 3.75 (s, MeO); 3.74 ($ddd, J = 23.8, 6.6, 3.5, CH(\alpha)$ –CH₂F); 3.41 – 3.19 (m, 2 NCH₂(allyl)); 1.39 (d, J = 7.2,Me). ¹³C-NMR (101 MHz, CDCl₃): 173.3 (COOMe); 169.9 (d, J = 16.1,CONH); 135.3 (2 CH(allyl)); 118.2 (2 CH₂(allyl)); 81.1 ($d, J = 170.8, CH_2F$), 62.5 ($d, J = 19.1, CH(\alpha)$); 54.0 (2 NCH₂(allyl)); 52.6 (CH($\alpha + 1$)); 47.8 (MeO); 18.6 (Me). ¹⁹F-NMR (376 MHz, CDCl₃): – 228.9 ($ddd, J = 47.8, 46.7, 23.8, CH_2F$). ESI-MS (pos.): 273 (100, [M + H]⁺). HR-ESI-MS (pos.): 273.1612 ([M + H]⁺, C₁₃H₂₂FN₂O₃⁺; calc. 273.1614).

(+)-N,N-*Diallyl*-(2R)-β²-*Ala*(α-*F*)-(3S)-*Val-OMe* (= *Methyl* N-*f*(2R)-3-*fDi*(*prop-2-en-1-yl*)*ami-noj*-2-*fluoropropanoylj*-L-*valinate*; **4c**) *and* (+)-N,N-*Diallyl*-(2S)-*Ser*(β-*F*)-(3S)-*Val-OMe* (= *Methyl* 3-*Fluoro*-N,N-*di*(*prop-2-en-1-yl*)-L-*alanyl*-L-*valinate*; **5c**). Following *GP* 3: starting with **3c** (136 mg, 0.455 mmol) and DAST (65.0 µl, 0.492 mmol), the reaction yielded **4c** (12.7 mg, 42.3 µmol, 12%). Colourless oil. *R*_f (hexane/AcOEt 80:20) 0.50. $[a]_{20}^{20}$ = +24.1 (*c* = 1.3, CHCl₃). ¹H-NMR (400 MHz, CDCl₃): 6.97 (br. *d*, *J* = 5.3, CONH); 5.83 (*dddd*, *J* = 17.0, 10.3, 6.6, 6.6, 2 CH(allyl)); 5.21 – 5.14 (*m*, 2 CH₂(allyl)); 5.04 (*ddd*, *J* = 50.1, 7.0, 2.8, CHF); 4.56 (*dd*, *J* = 8.9, 5.3, CH(*a* + 1)); 3.75 (*s*, MeO); 3.26 – 3.14 (*m*, 2 NCH₂(allyl)); 3.05 (*ddd*, *J* = 29.4, 14.9, 2.8, CH₃H_bCHF); 2.95 (*ddd*, *J* = 24.9, 14.9, 7.0, CH₄H_bCHF); 2.24 – 2.16 (*m*, Me₂CH); 0.95 (*d*, *J* = 6.9, Me); 0.93 (*d*, *J* = 6.9, Me). ¹³C-NMR (101 MHz, CDCl₃): 172.0 (COOMe); 169.0 (*d*, *J* = 19.1, CONH); 135.2 (2 CH(allyl)); 118.2 (2 CH₂(allyl)); 91.5 (*d*, *J* = 187.9, CHF); 57.6 (2 NCH₂(allyl)); 56.9 (CH(*a* + 1)); 54.6 (*d*, *J* = 19.1, CH₂CHF); 52.4 (MeO); 31.5 (Me₂CH); 19.1 (Me); 17.9 (Me). ¹⁹F-NMR (376 MHz, CDCl₃): - 190.8 (*dddd*, *J* = 50.1, 29.4, 24.9, 4.3, CHF). ESI-MS (pos.): 301 (100, [*M* + H]⁺). HR-ESI-MS (pos.): 301.1925 ([*M* + H]⁺, C₁₅H₂₆FN₂O⁺; calc. 301.1927).

Further elution of the mixture from the above preparation furnished **5c** (50.8 mg, 0.169 mmol, 35%). Colourless oil. R_f (hexane/AcOEt 80 :20) 0.4. $[a]_{D}^{20} = +2.1$ (c = 5.0, CHCl₃). IR (neat): 3367 (NH), 2962, 1741 (C=O), 1680 (C=O), 1500 (NH), 1149. ¹H-NMR (400 MHz, CDCl₃): 7.91 (br. d, J = 9.2, CONH); 5.83 (dddd, J = 17.3, 10.2, 7.3, 4.6, 2 CH(allyl)); 5.30 – 5.19 (m, 2 CH₂(allyl)); 4.96 (ddd, J = 46.8, 10.3, 3.5, CH_aH_bF); 4.92 (ddd, J = 47.8, 10.3, 6.3, CH_aH_bF); 4.53 (dd, J = 9.2, 4.6, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.92 (ddd, J = 47.8, 10.3, 6.3, CH_aH_bF); 4.53 (dd, J = 9.2, 4.6, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.92 (ddd, J = 47.8, 10.3, 6.3, CH_aH_bF); 4.53 (dd, J = 9.2, 4.6, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.92 (ddd, J = 47.8, 10.3, 0.5, CH_aH_bF); 4.53 (dd, J = 9.2, 4.6, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.92 (ddd, J = 47.8, 10.3, 0.5, CH_aH_bF); 4.53 (dd, J = 9.2, 4.6, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.92 (ddd, J = 47.8, 10.3, 0.5, CH_aH_bF); 4.53 (dd, J = 9.2, 4.6, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.53 (dd, J = 9.2, 9.2, 0.5, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.53 (dd, J = 9.2, 0.5, CH(a + 1)); 3.74 (ddd, J = 24.8, 10.3, 0.5, CH_aH_bF); 4.53 (dd, J = 9.2, 0.5, CH(a + 1)); 0.5, CH_aH_bF); 0.5, CH 6.3, 3.5, CH(α)–CH₂F); 3.74 (*s*, MeO); 3.45–3.39 (*m*, 2 NCH_aH_b(allyl)); 3.25–3.20 (*m*, 2 NCH_aH_b(allyl)); 2.25–2.15 (*m*, Me₂CH); 0.92 (*d*, *J* = 6.9, *Me*CH); 0.87 (*d*, *J* = 6.9, *Me*CH). ¹³C-NMR (101 MHz, CDCl₃): 172.3 (COOMe); 170.2 (*d*, *J* = 10.1, CONH); 135.3 (2 CH(allyl)); 118.2 (2 CH₂(allyl)); 81.1 (*d*, *J* = 171.5, CH₂F); 62.8 (*d*, *J* = 11.1, CH₂FC_aH); 56.9 (CH(α + 1)); 53.9 (2 NCH₂(allyl)); 52.3 (MeO); 31.3 (Me₂CH); 19.2 (Me); 17.7 (Me). ¹⁹F-NMR (376 MHz, CDCl₃): -227.6 (*ddd*, *J* = 47.8, 46.8, 24.8, CH₂F). ESI-MS (pos.): 301 (100, [*M* + H]⁺). HR-ESI-MS (pos.): 301.1921 ([*M* + H]⁺, C₁₅H₂₆FN₂O₃⁺; calc. 301.1927).

(-)-O-[(tert-*Butyl*)(dimethyl)silyl]-N-methyl-N-[(1S)-1-phenylethyl]-N²,N²-diprop-2-en-1-yl-L-serinamide. Following *GP*1: starting with **6** (205 mg, 0.685 mmol), (-)-(S)-N,α-dimethylbenzylamine (=(1S)-N-methyl-1-phenylethanamine; 188 mg, 200 µl, 1.39 mmol), EtNⁱPr₂ (450 µl, 2.58 mmol), and *T3P* (470 µl, 50% (w/w) in AcOEt), the reaction yielded the title compound (231 mg, 0.561 mmol, 82%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 90 :10) 0.25. $[\alpha]_{\rm D}^{20} = -87.0$ (c = 1.3, CHCl₃). IR (neat): 2927, 2854, 1635 (C=O), 1404, 1095, 920 (Si–C). ¹H-NMR (400 MHz, CDCl₃): (major rotamer) 7.34–7.21 (*m*, 5 arom. H); 6.07 (q, J = 7.1, CH($\alpha + 1$)); 5.84–5.73 (m, 2 CH(allyl)); 5.18–5.03 (m, 2 NCH₂(allyl)); 4.07 (dd, J = 9.5, 7.6, OCH_aH_b); 3.91 (dd, J = 9.5, 5.4, OCH_aH_b); 3.84 (dd, J = 7.6, 5.4, CH(α)); 3.32–3.28 (m, 2 NCH₂(allyl)); 2.70 (s, MeN); 1.44 (d, J = 7.1, MeCH); 0.85 (s, 'Bu); 0.05 (s, MeSi); 0.03 (s, MeSi). ¹³C-NMR (101 MHz, CDCl₃): 172.0 (CONH); 140.8 (arom. C); 137.2 (2 CH(allyl)); 128.4 (2 arom. CH); 127.5 (2 arom. CH); 117.5 (arom. CH); 116.9 (2 CH₂(allyl)); 62.1 (CH₂); 60.9 (CH(α)); 54.0 (2 NCH₂(allyl)); 50.3 (CH($\alpha + 1$)); 29.6 (MeN); 26.0 (Me_3 C); 18.4 (SiC); 15.7 (MeCH); -5.3 (MeSi); -5.4 (MeSi). ESI-MS (pos.): 417 (100, [M +H]⁺). HR-ESI-MS (pos.): 417.2941 ([M +H]⁺, C₂₄H₄₁N₂O₂Si⁺; calc. 417.2937).

 $(-) - 0 - [(tert-Butyl)(dimethyl)silyl] - N - [(1S) - 1 - phenylethyl] - N^2, N^2 - diprop - 2 - en - 1 - yl - L - serinamide.$ Following *GP 1:* starting with (2S) - 3 - [(*tert*-butyl)dimethylsilyloxy] - 2 - (diallylamino)propanoic acid (104 mg, 0.347 mmol), (-) - (S) - a - methylbenzylamine (=(1S) - 1 - phenylethanamine; 85.0 µl, 0.668 mmol), EtN³Pr₂ (230 µl, 1.34 mmol), and *T3P* (390 µl, 50% (w/w) in AcOEt), the reaction yielded the title compound (109 mg, 0.270 mmol, 78%). Colourless oil: *R*_f (hexane/AcOEt 80 : 20) 0.5. [*a*]_D²⁰ = -50.3 (*c* = 1.0, CHCl₃). IR (neat): 3365 (NH), 2953, 1747 (C=O), 1674 (C=O), 1498 (NH), 1259, 920 (Si-C). ¹H-NMR (400 MHz, CDCl₃): 7.73 (*d*, *J* = 8.0, CONH); 7.33 - 7.20 (*m*, 5 arom. H); 5.81 - 5.71 (*m*, 2 CH(allyl)); 5.18 - 5.08 (*m*, 2 CH₂(allyl)); 5.02 (*dq*, *J* = 8.0, 6.9, CH(*a* + 1)); 4.20 (*dd*, *J* = 11.1, 4.2, OCH_aH_b); 3.98 (*dd*, *J* = 11.1, 7.8, OCH_aH_b); 3.51 (*dd*, *J* = 78, 4.2, CH(*a*)); 3.36 - 3.27 (*m*, 2 NCH₂(allyl)); 1.42 (*d*, *J* = 6.9, *Me*CH); 0.88 (*s*, 'Bu); 0.05 (*s*, MeSi); 0.04 (*s*, MeSi). ¹³C-NMR (101 MHz, CDCl₃): 171.2 (CONH); 143.6 (arom. C); 136.2 (2 CH(allyl)); 128.7 (2 arom. CH); 127.3 (arom. CH); 126.1 (2 arom. CH); 117.5 (2 CH₂(allyl))); 61.5 (CH₂O); 54.0 (2 NCH₂(allyl)); 48.4 (CH(*a* + 1)); 26.0 (*Me₃C*); 22.5 (Me); 18.2 (SiC); -5.4 (MeSi); -5.5 (MeSi). ESI-MS (pos.): 425 (30, [*M* + Na]⁺), 403 (100, [*M* + H]⁺). HR-ESI-MS (pos.): 403.2787 ([*M* + H]⁺, C₂₃H₃₉N₂O₂Si⁺; calc. 403.2781).

N-*Methyl*-N-[*(*1S)-1-phenylethyl]-N²,N²-diprop-2-en-1-yl-L-serinamide (**12a**). Following *GP* 2: starting with (-)-[(*tert*-butyl)(dimethyl)silyl]-N-[(1S)-1-phenylethyl]-N²,N²-diprop-2-en-1-ylserinamide (102 mg, 0.245 mmol), AcOH (60.0 µl, 1.00 mmol), and TBAF (1.00 ml, 1M in THF), the reaction yielded **12a** (58 mg, 0.192 mmol, 78%). Colourless oil: R_f (hexane/AcOEt 80:20) 0.15. $[\alpha]_D^{20} = -54.2$ (c = 0.8, CHCl₃). IR (neat): 3419 (OH), 2926, 1630 (C=O), 1404, 1282, 1122, 995. ¹H-NMR (500 MHz, CDCl₃): (major rotamer): 7.31–7.17 (*m*, 5 arom. H); 5.98 (*q*, *J* = 7.1, CH(α +1)); 5.74–5.61 (*m*, 2 CH(allyl)); 5.15–5.11 (*m*, 2 CH₂(allyl)); 3.94 (*dd*, *J* = 10.9, 6.9, CH(α)); 3.76–3.70 (*m*, CH₂OH); 3.41 (br. *s*, CH₂OH); 3.40–3.29 (*m*, 2 NCH_aH_b(allyl)); 3.18–3.12 (*m*, 2 NCH_aH_b(allyl)); 2.70 (*s*, MeO); 1.41 (*d*, *J* = 7.1, Me). ¹³C-NMR (126 MHz, CDCl₃): 172.5 (CONH); 140.2 (arom. C); 136.1 (2 CH(allyl)); 128.8 (2 arom. CH); 127.5 (2 arom. CH); 118.4 (arom. CH); 117.8 (2 CH₂(allyl)); 60.8 (CH(α)); 58.0 (CH₂O); 53.8 (2 NCH₂(allyl)); 50.7 (CH(α + 1)); 29.7 (MeN); 15.7 (Me). ESI-MS (pos.): 325 (100, [*M*+Na]⁺). HR-ESI-MS (pos.): 325.1885 ([*M*+Na]⁺, C₁₈H₂₆N₂NaO[±]; calc. 325.1892).

N-[(1S)-1-Phenylethyl]-N²,N²-diprop-2-en-1-yl-L-serinamide (12b). Following *GP* 2: starting with (-)-[(*tert*-butyl)(dimethyl)silyl]-N-[(1S)-1-phenylethyl]-N²,N²-diprop-2-en-1-ylserinamide (93 mg, 0.231 mmol), AcOH (66 µl, 1.16 mmol), and TBAF (900 µl, 1 M in THF), the reaction yielded 12b (51.0 mg, 0.180 mmol, 77%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 80:20) 0.11. $[\alpha]_{\rm D}^{20} = -25.2$ (c = 0.7, CHCl₃). IR (neat): 3325 (OH/NH), 3064, 2926, 1647 (C=O), 1521 (NH), 1494, 1280, 1128, 993. ¹H-NMR (300 MHz, CDCl₃): (major rotamer): 7.63 (d, J = 7.8, CONH); 7.35 – 7.22 (m, 5 arom. H); 5.74 (dddd, J =

17.3, 10.1, 7.3, 4.6, 2 CH(allyl)); 5.23 – 5.12 (m, 2 CH₂(allyl)); 5.06 (dq, J = 7.8, 6.9, CH(α + 1)); 3.94 (dd, J = 11.1, 7.9, OCH_aH_b); 3.79 (dd, J = 11.1, 3.9, OCH_aH_b); 3.58 (br. s, OH); 3.42 (dd, J = 7.9, 3.9, CH(α)); 3.34 – 3.26 (m, 2 NCH_aH_b(allyl)); 3.08 – 3.01 (m, 2 NCH_aH_b(allyl)); 1.45 (d, J = 6.9, Me). ¹³C-NMR (75 MHz, CDCl₃): 173.6 (CONH); 143.1 (arom. C); 135.4 (2 CH(allyl)); 128.9 (2 arom. CH); 127.5 (arom. CH); 126.0 (2 arom. CH); 118.1 (2 NCH₂(allyl)); 62.7 (CH(α)); 58.2 (MeO); 53.7 (2 CH₂(allyl)); 48.5 (CH(α + 1)); 22.4 (Me). HR-ESI-MS (pos.): 311.1739 ([M + Na]⁺, C₁₇H₂₄N₂NaO⁺₂; calc. 311.1735). ESI-MS (pos.): 311 (100, [M + Na]⁺), 289 (20, [M + H]⁺).

(-)-N,N-*Diallyl*-(2R)-β²-Ala(α-F)-N'(Me)-(S)-α-methylbenzylamide (=(2R)-3-[Di(prop-2-en-1-yl)amino]-2-fluoro-N-methyl-N-[(IS)-1-phenylethyl]propanamide; **13a**). Following *GP* 3: starting with **12a** (50.0 mg, 0.165 mmol) and DAST (25 µl, 0.189 mmol), the reaction yielded **13a** (41.0 mg, 0.135 mmol, 81%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 90:10) 0.09. $[\alpha]_{\rm D}^{20} = -125$ (c = 1.8, CHCl₃). ¹H-NMR (400 MHz, CDCl₃): (major rotamer): 7.32 – 7.18 (m, 5 arom. H); 5.96 (qq, J = 7.1, 1.6, CH($\alpha + 1$)); 5.83 – 5.70 (m, 2 CH(allyl)); 5.48 – 5.23 (m, CHF); 5.16 – 5.03 (m, 2 CH₂(allyl)); 3.20 – 3.10 (m, 2 NCH₂(allyl)); 3.04 – 2.90 (m, CH₂CHF); 2.63 (d, J = 1.6, MeN); 1.43 (d, J = 7.1, Me). ¹³C-NMR (101 MHz, CDCl₃): 168.2 (d, J = 20.0, CONH); 139.9 (arom. C); 135.3 (2 CH(allyl)); 128.6 (2 arom. CH); 127.5 (2 arom. CH); 126.8 (arom. CH); 118.2 (2 CH₂(allyl)); 89.0 (d, J = 181.3, CH(α)F); 57.9 (2 NCH₂(allyl)); 54.4 (d, J = 21.9, CH₂CHF); 51.0 (CH($\alpha + 1$)); 28.5 (MeN); 15.5 (Me). ¹⁹F-NMR (376 MHz, CDCl₃): - 184.5 (ddd, J = 50.3, 28.9, 21.0, CHF (minor)); - 186.8 (ddd, J = 49.3, 28.3, 20.6, CHF (major)). ESI-MS (pos.): 327 (100, [M + Na]⁺), 305 (30, [M + Na]⁺). HR-ESI-MS (pos.): 327.1844 ([M + Na]⁺, C₁₈H₂₅FN₂NaO⁺₃; calc. 327.1849).

Methyl O-[tert-Butyl(dimethyl)silyl]-N,N-di(prop-2-en-1-yl)-L-seryl-N-prop-2-en-1-yl-L-phenylalaninate (15). Phosphazene P4-'Bu (1M in hexanes, 1.00 ml, 1.00 mmol, 0.93 equiv.) was gradually added dropwise to a soln. of 7 (500 mg, 1.09 mmol, 1.0 equiv.) and allyl bromide (500 µl, 5.79 mmol, 5.3 equiv.) in THF (15 ml) at -100° . The resulting mixture was gradually warmed to -78° and stirred at this temp. for 20 h before being diluted with AcOEt (10 ml), and washed with HCl (1M, 2×10 ml). The org. fractions were dried (Na₂SO₄), filtered, and the solvent was removed *in vacuo*. The mixture was purified by CC (SiO₂; hexane/AcOEt (90:10) to yield 15 (286 mg, 0.57 mmol, 53%). Colourless oil: R_f (hexane/ AcOEt 90:10) 0.10. $[\alpha]_{20}^{20} = -102.3 \ (c=2.3, \text{CHCl}_3)$. IR (neat): 2951, 2856, 1747 (C=O), 1670 (C=O), 1259, 1093, 920 (Si-C). 1H-NMR (300 MHz, CDCl₃): (major rotamer): 7.30-7.17 (m, 5 arom. H); 5.79-5.67 (*m*, 2 CH(allyl)); 5.66–5.58 (*m*, CH(allyl)); 5.17–5.06 (*m*, 2 CH₂(allyl)); 5.09–4.96 (*m*, CH₂(allyl)); 4.19 $(dd, J = 9.6, 5.4, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 - 3.88 (m, OCH_2, N'CH_2(allyl)); 3.71 - 3.67 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 (m, CH(\alpha)); 3.64 (s, CH(\alpha + 1)); 4.06 (m, CH(\alpha)); 4.06 ($ MeO); 3.40-3.08 (m, 2 NCH₂(allyl), CH₂Ph); 0.91 (s, 'Bu); 0.10 (s, MeSi); 0.08 (s, MeSi). ¹³C-NMR (101 MHz, CDCl₃): 171.4 (CONH); 171.3 (COOMe); 138.5 (arom. C); 136.7 (2 CH(allyl)); 134.5 (CH(allyl)); 129.6 (2 arom. CH); 128.6 (2 arom. CH); 126.6 (arom. CH); 118.0 (CH₂(allyl)) 117.5 (2 $CH_2(allyl)$; 61.3 ($CH(\alpha)$); 60.4 ($CH(\alpha+1)$); 59.9 (CH_2O); 53.6 (2 $NCH_2(allyl)$); 52.0 (MeO); 51.3 (N'CH₂(allyl)); 34.9 (CH₂Ph); 26.1 (Me₃C); 18.5 (SiC); -5.2 (MeSi); -5.3 (MeSi). ESI-MS (pos.): 523 $(100, [M+Na]^+), 501 (80, [M+H]^+)$. HR-ESI-MS (pos.): 523.2969 $([M+Na]^+, C_{28}H_{44}N_2NaO_4Si^+;$ calc. 523.2968).

Methyl N,N-*Di*(*prop*-2-*en*-1-*yl*)-L-*seryl*-N-*prop*-2-*en*-1-*yl*-L-*phenylalaninate* (**16**). Following *GP* 2: starting with **15** (206 mg, 0.411 mmol), AcOH (120.0 µl, 2.06 mmol), and TBAF (1.6 ml, 1_M in THF), the reaction yielded **16** (133 mg, 0.345 mmol, 84%). Colourless oil: R_f (hexane/AcOEt 70:30) 0.12. $[\alpha]_{10}^{20} = -124$ (c = 1.2, CHCl₃). IR (neat): 3446 (OH), 3078, 2949, 1743 (C=O), 1635 (C=O), 1436, 1274, 1195, 993. ¹H-NMR (400 MHz, CDCl₃): (major rotamer): 7.25 – 7.06 (m, 5 arom. H); 5.63 (*dddd*, J = 17.3, 10.0, 7.4, 5.4, 2 CH(allyl)); 5.59 – 5.50 (m, H–C(allyl)); 5.11 – 5.03 (m, 2 CH₂(allyl)); 5.03 – 4.92 (m, CH₂(allyl)); 4.12 (*dd*, $J = 10.2, 5.2, CH(\alpha + 1)$); 4.00 – 3.94 (m, N'CH_aH_b(allyl)); 3.88 (*dd*, J = 11.3, 7.3, OCH_aH_b); 3.69 (*dd*, <math>J = 11.3, 5.0, OCH_aH_b); 3.62 (<math>s, MeO); 3.60 (*dd*, $J = 7.3, 5.0, CH(\alpha)$); 3.32 (*dd*, J = 14.0, 5.2, CH_aH_bPh); 3.22 – 3.04 (m, CH_aH_bPh, 2 NCH₂(allyl)), N'CH_aH_b(allyl)); 2.27 (br. *s*, OH). ¹³C-NMR (101 MHz, CDCl₃): 172.5 (CONH); 170.9 (COOMe); 138.0 (arom. C); 136.1 (2 CH(allyl)); 133.8 (CH(allyl)); 129.4 (2 arom. CH); 128.8 (2 arom. CH); 126.9 (arom. CH); 118.8 (CH₂(allyl)); 118.1 (2 CH₂(allyl)); 60.8 (CH(α)); 60.4 (CH(α + 1)); 57.8 (CH₂O); 53.5 (2 NCH₂(allyl)); 52.2 (MeO); 51.6 (N'CH₂(allyl)); 34.7 (CH₂Ph). ESI-MS (pos.): 409 (100, [M + Na]⁺). HR-ESI-MS (pos.): 409.2090 ([M + Na]⁺, C₂₂H₃₀N₂NaO⁺; calc. 409.2103).

(-)-N,N-Bisallyl-(2R)- β^2 -Ala $(\alpha$ -F)-N'-allyl-(3S)-Phe-OMe (= Methyl N-{(2R)-3-[Di(prop-2-en-1-1)]}) yl)amino]-2-fluoropropanoyl]-N-prop-2-en-1-yl-L-phenylalaninate; 17). Following GP 3: starting with 16 (76.3 mg, 0.197 mmol) and DAST (30.0 µl, 0.265 mmol), the reaction yielded 17 (56 mg, 0.144 mmol, 73%). Colourless oil: $R_{\rm f}$ (hexane/AcOEt 90:10) 0.1. $[\alpha]_{\rm D}^{20} = -39.2$ (c = 1.3, CHCl₃). IR (neat): 3076, 2949, 1743 (C=O), 1653 (C=O), 1436, 1222, 1166, 993. ¹H-NMR (500 MHz, CDCl₃): (major rotamer): $7.25 - 7.09 \ (m, 5 \ \text{arom. H}); 5.74 \ (dddd, J = 17.0, 10.3, 6.6, 6.6, 2 \ \text{CH(allyl)}); 5.52 - 5.44 \ (m, \text{CH(allyl)});$ $5.12-5.04 (m, 3 \times CH_2(allyl)); 5.06 (ddd, J = 49.7, 8.0, 3.2, CHF); 4.31 (dd, J = 10.3, 5.3, CH(a+1));$ 3.86 - 3.82 (m, N'CH₂(allyl)); 3.64 (s, MeO); 3.30 (dd, $J = 14.1, 5.3, CH_aH_bPh$); 3.17 (dd, J = 14.1, 10.3, 10.3); 3.64 (s, MeO); 3.30 (dd, $J = 14.1, 5.3, CH_aH_bPh$); 3.17 (dd, J = 14.1, 10.3 $CH_{a}H_{b}Ph$); 3.13-3.03 (m, 2 NCH₂(allyl)); 2.82 (ddd, J = 18.1, 15.0, 8.0, $CH_{a}H_{b}CHF$); 2.68 (31.8, 15.0, 3.2, CH_aH_bCHF). ¹³C-NMR (125 MHz, $CDCI_3$): 170.5 (COOMe); 168.5 (d, J = 20.4, CONH); 137.6 (arom. C); 135.3 (2 CH(allyl)); 133.1 (CH(allyl)); 129.4 (2 arom. CH); 128.7 (2 arom. CH); 126.9 (arom. CH); 118.4 (CH₂(allyl)); 118.1 (2 CH₂(allyl)); 88.4 (d, J = 180.7, CHF); 60.8 (CH(a + 1)); 57.7 (2 NCH₂(allyl)); 54.3 ($d, J = 21.6, CH_2CHF$); 52.4 (MeO); 50.8 ($d, J = 4.1, N'CH_2(allyl)$); 34.8 (CH_2Ph) . ¹⁹F-NMR (470 MHz, CDCl₃): -185.4 (*ddd*, J = 49.6, 33.5, 19.0, CHF (minor rotamer)); - 187.2 (ddd, J = 49.7, 31.8, 18.1, CHF (major rotamer)). ESI-MS (pos.): 411 (100, [M + Na]⁺). HR-ESI-MS (pos.): 411.2058 ($[M + Na]^+$, $C_{22}H_{29}N_2NaO_3F^+$; calc. 411.2060).

 $(2R)-\beta^2-Ala(\alpha-F)-N'-allyl-(2S)-Phe-OMe$ (= Methyl N-[(2R)-3-Amino-2-fluoropropanoyl]-N-prop-2-en-1-yl-L-phenylalaninate). 1,4-Bis(phenylphosphino)butane (16.5 mg, 37.3 µmol, 30.0 mol%) was added to a soln. of tris(dibenzylideneacetone)dipalladium (22.2 mg, 24.2 µmol, 25.0 mol%) in THF (5 ml) and stirred for 15 min until the soln. turned yellow. This soln. was added via canula to a soln. of 17 (51.6 mg, 0.133 mmol, 1.0 equiv.) and 2-sulfanylsalicylic acid (60.0 mg, 0.389 mmol, 2.9 equiv.) in THF (7.0 ml), and the soln. was brought to reflux for 3 h. The mixture was cooled to r.t., and H₂O (10 ml) and HCl (1M, 0.2 ml) were added. The precipitate was isolated by filtration and washed repeatedly with H₂O, with the filtrate collected and the solvent removed in vacuo to furnish a yellow solid. This solid was reconstituted in H₂O and re-filtered, and the sample was lyophilised to yield the title compound (41 mg, 0.20 mmol, 93%). Colourless solid which was used without further purification: $[\alpha]_D^{20} = -41.7$ (c = 1.0, D_2O). ¹H-NMR (500 MHz, D_2O): (major rotamer) 7.36–7.22 (*m*, 5 arom. H); 5.62 (*ddd*, J = 48.0, 7.4, 7.4) 3.4, $C(\alpha)$ HF); 5.58–5.51 (*m*, CH(allyl)); 5.18–5.14 (*m*, CH₂(allyl)); 4.65 (*dd*, $J = 10.7, 5.1, CH(\alpha + 1));$ 3.96-3.92 (m, N'CH_aH_b(allyl)); 3.71 (s, MeO); 3.41-3.32 (m, CH₂CHF); 3.29-3.16 (m, CH₂Ph, N'CH_a H_{b} (allyl). ¹³C-NMR (101 MHz, D₂O): 172.2 (COOMe); 167.5 (d, J = 19.8, CONH); 136.9 (arom. C); 131.6 (CH(allyl)); 129.4 (2 arom. CH); 128.8 (2 arom. CH); 127.1 (arom. CH); 119.3 (CH₂(allyl)); 84.3 (d, J = 179, CHF); 61.3 (CH($\alpha + 1$)); 53.0 (MeO); 51.5 (N'CH₂(allyl)); 40.0 (d, J = 21.3, CH₂CHF); 33.5 (CH₂Ph). ¹⁹F-NMR (376 MHz, D₂O): -193.9 (*ddd*, J = 48.0, 27.9, 20.2, CHF (minor rotamer)); -194.7 (*ddd*, J = 48.0, 26.8, 21.5, CHF (major rotamer)). ESI-MS (pos.): 331 (50, $[M + Na]^+$), 309 (100, $[M + H]^+$). HR-ESI-MS (pos.): 309.1621 ($[M + H]^+$, $C_{16}H_{22}FN_2O_3^+$; calc. 309.1614).

(-)-N-Boc-(2R)- β^2 -Ala $(\alpha$ -F)-N'-allyl-(2S)-Phe-OMe (= Methyl N- $\{(2R)$ -3-[(tert-Butoxycarbonyl)amino]-2-fluoropropanoyl]-N-prop-2-en-1-yl-L-phenylalaninate; 18). EtNⁱPr₂ (40.0 µl, 0.230 mmol, 3.0 equiv.) and Boc₂O (22.0 mg, 0.101 mmol, 1.3 equiv.) were added to a soln. of (2R)- β^2 -Ala(α -F)-N'allyl-(2S)-Phe-OMe (24.0 mg, 69.6 μ mol, 1.0 equiv.) in aq. dioxane (2 ml, 25% ν/ν), and the mixture was stirred at r.t. for 24 h. The reaction was quenched by the addition of sat. aq. Na₂CO₃ (2 ml), and the aq. phase was extracted with AcOEt $(2 \times 2 \text{ ml})$. The org. extracts were combined, dried (Na₂SO₄), filtered, and the solvent was removed in vacuo to yield an oil. The product was purified by CC (SiO₂; hexane/ AcOEt 90:10), to yield **18** (20.1 mg, 49.2 µmol, 71%). Colourless oil. $[\alpha]_{D}^{20} = -52.1$ (c = 2.0, CHCl₃). ¹H-NMR (400 MHz, CDCl₃): (major rotamer): 7.31-7.16 (*m*, 5 arom. H); 5.55-5.46 (*m*, CH(allyl)); 5.17-5.10 (m, CH₂(allyl)); 5.15-5.02 (m, CH(a)F); 4.93 (t, J = 6.3, NHBoc); 4.40 (dd, J = 10.4, 5.1, $CH(\alpha + 1)$; 3.96–3.87 (*m*, N'CH_aH_b(allyl)); 3.73 (*s*, MeO); 3.58–3.29 (*m*, CH₂CHF, N'CH_aH_b(allyl)); 3.38 (dd, J = 14.2, 5.1, $CH_{a}H_{b}Ph$); 3.24 (dd, J = 14.2, 10.4, $CH_{a}H_{b}Ph$); 1.44 (s, 'Bu). ¹³C-NMR (75 MHz, CDCl₃): 170.5 (COOMe); 167.8 (d, J = 20.3, CONH); 156.0 (OCO'Bu); 137.5 (arom. C); 132.8 (CH(allyl)); 129.5 (2 arom. CH); 128.7 (2 arom. CH); 127.0 (arom. CH); 119.0 (CH₂(allyl)); 86.4 (d, J = 181, CHF); 60.9 (CH(α + 1)); 52.5 (MeO); 51.1 (NCH₂(allyl)); 41.7 ($d, J = 23.8, CH_2CHF$); 34.8 (CH₂Ph); 30.0 (Me₃C); 28.5 (Me₃C). ¹⁹F-NMR (376 MHz, CDCl₃): -191.5 (ddd, J = 47.3, 25.4, 19.6, CHF (minor rotamer)); -192.5 (ddd, J = 48.0, 22.9, 17.4, CHF (major rotamer)). ESI-MS (pos.): 431 $(100, [M + Na]^+)$. HR-ESI-MS (pos.): 431.1948 ($[M + Na]^+$, $C_{21}H_{20}FN_2NaO_5^+$; calc. 431.1958).

N-Boc-(2R)- β^2 -Ala(α -F)-N'-formyl-(2S)-Phe-OMe (= Methyl N- $\{(2R)$ -3-f(tert-Butoxycarbonyl)amino]-2-fluoropropanoyl}-N-formyl-L-phenylalaninate; 19). [RuH(CO)Cl(PPh₃)₃] (4.7 mg, 4.9 µmol, 10 mol-%) was added to a soln. of 18 (20 mg, 48.9 µmol, 1.0 equiv.) in toluene (2 ml), and the mixture was brought to reflux for 3 h. The soln. was cooled to r.t. and the solvent removed in vacuo. RuCl₃ (1.0 mg, 1.7 µmol, 3.5 mol-%) and NaIO₄ (20.8 mg, 97.8 µmol, 2 equiv.) in aq. 1,2-dichloroethane (50% (v/v), 1 ml) were added to the isomerised product, and the mixture was stirred at r.t. for 24 hr. The reaction was quenched by the addition of sat. aq. Na2CO3 (1 ml), and the org. phases were extracted with AcOEt $(2 \times 2 \text{ ml})$. The org. phases were combined and washed with brine (1 ml), dried (Na_2SO_4) , filtered, and the solvent was removed in vacuo to yield an oil. The product was purified by $CC(SiO_2)$ to yield **19** (11.5 mg, 29 μ mol, 59%). Colourless oil. $[\alpha]_D^{20} = -30.2$ (c = 1.1, CHCl₃). ¹H-NMR (500 MHz, CDCl₃): 8.97 (*s*, CHO); 7.29–7.10 (*m*, 5 arom. H); 5.49 (*dd*, *J* = 10.2, 5.2, NHBoc); 5.35–5.26 (*m*, CHF); $4.74 (m, CH(\alpha + 1)); 3.76 (s, MeO); 3.52 (dd, J = 14.2, 5.4, CH_aH_bPh); 3.54 - 3.34 (m, CH_aH_bCHF); 3.28$ (*dd*, *J* = 14.2, 11.1, CH_a*H*_bPh); 3.32 – 3.23 (*m*, CH_a*H*_bCHF); 1.44 (*s*, 'Bu). ¹³C-NMR (126 MHz, CDCl₃): 169.1 (COOMe); 168.8 (CHO), 161.3 (d, J = 9.6, CONH); 155.7 (OCO'Bu); 136.3 (arom. C); 129.2 (2) arom. CH); 128.6 (2 arom. CH); 127.1 (arom. CH); 87.0 (d, J = 186, CHF); 60.4 ($s, HC(\alpha + 1)$); 52.8 (MeO); 41.8 ($d, J = 23.1, CH_2CHF$); 34.3 (CH_2Ph); 29.7 (Me₃C); 28.3 (Me_3C). ¹⁹F-NMR (470 MHz, CDCl₃): -190.1 to -190.7 (br. m, CHF (minor rotamer)); -191.1 to -191.8 (br. m, CHF (major rotamer)). ESI-MS (pos.): 419 (100, [M+Na]⁺). HR-ESI-MS (pos.): 419.1588 ([M+Na]⁺, $C_{19}H_{25}FN_2NaO_6^+$; calc. 419.1594).

(+)-*N*-Boc-(2R)- β^2 -Ala(α -F)-(2S)-Phe-OMe (= Methyl N-{(2R)-3-{(tert-Butoxycarbonyl)amino}]-2-fluoropropanoyl]-L-phenylalaninate; **20**). Sat. aq. Na₂CO₃ (0.5 ml) was added to a soln. of NaHCO₃ (1.0 mg, 9.4 µmol, 0.33 equiv.) and **19** (11.0 mg, 28 µmol, 1.0 equiv.) in aq. acetone (25% (*v*/*v*), 1 ml), and the mixture was stirred vigorously for 12 h at r.t. The mixture was diluted with H₂O (1 ml) and AcOEt (2 ml), the org. phase was separated, and the aq. layer was further extracted with AcOEt (2 ml). The org. phases were combined, washed with brine (1 ml), dried with Na₂SO₄, filtered, and the solvent was removed *in vacuo*. The oil was purified by CC (SiO₂) to yield **20** (4.7 mg, 12 µmol, 46%). Colourless solid. [α]₁₀²⁰ = -26.1 (*c* = 0.1, CHCl₃). ¹H-NMR (500 MHz, CDCl₃): 7.34 - 7.11 (*m*, 5 arom. H); 6.70 (br. *d*, *J* = 4.9, CONH); 4.95 - 4.84 (*m*, CHF, CH(α + 1), NHBoc); 3.82 - 3.72 (*m*, CH_aH_bCHF); 3.75 (*s*, MeO); 3.54 - 3.44 (*m*, CH_aH_bCHF); 3.19 (*dd*, *J* = 14.0, 5.7, CH_aH_bPh); 3.12 (*dd*, *J* = 14.0, 6.5, CH_aH_bPh); 1.43 (*s*, Bu). ¹³C-NMR (126 MHz, CDCl₃): 171.2 (COOMe); 167.9 (*d*, *J* = 20.7, CONH); 155.7 (OCO'Bu); 135.3 (arom. C); 129.1 (2 arom. CH); 128.8 (2 arom. CH); 127.4 (arom. C); 90.0 (*d*, *J* = 194.5, CHF); 52.8 (CH(α + 1)); 52.6 (MeO); 42.1 (*d*, *J* = 21.1, CH₂CHF); 37.7 (CH₂Ph); 29.7 (Me₃C); 28.3 (*Me*₃C). ¹⁹F-NMR (470 MHz, CDCl₃): -195.3 (*ddd*, *J* = 48.1, 23.7, 23.7, CHF). ESI-MS (pos.): 391 (100, [*M* + Na]⁺). HR-ESI-MS (pos.): 391.1645 ([*M* + Na]⁺, C₁₈H₂₅FN₂NaO⁺₅; calc. 391.1645).

REFERENCES

- [1] D. Seebach, A. K. Beck, D. J. Bierbaum, Chem. Biodiversity 2004, 1, 1111.
- [2] a) R. I. Mathad, B. Jaun, O. Flögel, J. Gardiner, M. Löweneck, J. D. C. Codée, P. H. Seeberger, D. Seebach, M. K. Edmonds, F. H. M. Graichen, A. D. Abell, *Helv. Chim. Acta* 2007, 90, 2251; b) B. Jaun, D. Seebach, R. I. Mathad, *Helv. Chim. Acta* 2011, 94, 355; c) F. Gessier, C. Noti, M. Rueping, D. Seebach, *Helv. Chim. Acta* 2003, 86, 1862; d) D. F. Hook, F. Gessier, C. Noti, P. Kast, D. Seebach, *ChemBioChem* 2004, 5, 691.
- [3] J. W. Banks, A. S. Batsanov, J. A. K. Howard, D. O'Hagan, H. S. Rzepa, S. Martin-Santamaria, J. Chem. Soc., Perkin Trans. 2 1999, 2409.
- [4] C. R. S. Briggs, D. O'Hagan, J. A. K. Howard, D. S. Yufit, J. Fluorine Chem. 2003, 119, 9.
- [5] L. Somekh, A. Shanzer, J. Am. Chem. Soc. 1982, 104, 5836.
- [6] T.-X. Métro, B. Duthion, D. G. Pardo, J. Cossy, Chem. Soc. Rev. 2010, 39, 89.
- [7] N. H. Campbell, D. L. Smith, A. P. Reszka, S. Neidle, D. O'Hagan, Org. Biomol. Chem. 2011, 9, 1328.
- [8] J. R. Dunetz, Y. Xiang, A. Baldwin, J. Ringling, Org. Lett. 2011, 13, 5048.
- [9] B. Duthion, D. G. Pardo, J. Cossy, Org. Lett. 2010, 12, 4620.

- [10] G. Deniau, A. M. Z. Slawin, T. Lebl, F. Chorki, J. P. Issberner, T. van Mourik, J. M. Heygate, J. J. Lambert, L.-A. Etherington, K. T. Sillar, D. O'Hagan, *ChemBioChem* 2007, 8, 2265.
- [11] B. Kuhn, P. Mohr, M. Stahl, J. Med. Chem. 2010, 53, 2601.
- [12] T. Pietzonka, D. Seebach, Angew. Chem., Int. Ed. 1992, 31, 1481.
- [13] R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, D. Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish, G.-Z. Ji, E.-M. Peters, K. Peters, H. G. von Schnering, L. Walz, *Liebigs Ann. Chem.* 1996, 1055.
- [14] S. Lemaire-Audoire, M. Savignac, J. P. Genêt, J.-M. Bernard, Tetrahedron Lett. 1995, 36, 1267.
- [15] S. Escoubet, S. Gastaldi, M. Bertrand, Eur. J. Org. Chem. 2005, 3855.
- [16] M. Schelhaas, H. Waldmann, Angew. Chem., Int. Ed. 1996, 35, 2056.
- [17] F. Guibé, Tetrahedron 1998, 54, 2967.
- [18] K. Kajihara, M. Arisawa, S. Shuto, J. Org. Chem. 2008, 73, 9494.
- [19] B. Alcaide, P. Almendros, J. M. Alonso, Chem. Eur. J. 2006, 12, 2874.
- [20] B. M. Trost, M. T. Rudd, Org. Lett. 2003, 5, 4599.

Received August 14, 2012